Copied to
clipboard

G = C22×C40⋊C2order 320 = 26·5

Direct product of C22 and C40⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C40⋊C2, C4010C23, C20.54C24, C23.60D20, Dic104C23, D20.20C23, (C2×C8)⋊35D10, C89(C22×D5), (C2×C10)⋊9SD16, C101(C2×SD16), (C2×C4).99D20, C4.44(C2×D20), (C22×C8)⋊10D5, C51(C22×SD16), (C22×C40)⋊14C2, (C2×C40)⋊46C22, (C2×C20).390D4, C20.289(C2×D4), C4.51(C23×D5), C22.69(C2×D20), C10.21(C22×D4), C2.23(C22×D20), (C2×C20).786C23, (C22×D20).10C2, (C22×C4).442D10, (C22×C10).144D4, (C22×Dic10)⋊11C2, (C2×Dic10)⋊56C22, (C2×D20).236C22, (C22×C20).525C22, (C2×C10).177(C2×D4), (C2×C4).735(C22×D5), SmallGroup(320,1411)

Series: Derived Chief Lower central Upper central

C1C20 — C22×C40⋊C2
C1C5C10C20D20C2×D20C22×D20 — C22×C40⋊C2
C5C10C20 — C22×C40⋊C2
C1C23C22×C4C22×C8

Generators and relations for C22×C40⋊C2
 G = < a,b,c,d | a2=b2=c40=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c19 >

Subgroups: 1342 in 298 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×Q8, C24, Dic5, C20, C20, D10, C2×C10, C22×C8, C2×SD16, C22×D4, C22×Q8, C40, Dic10, Dic10, D20, D20, C2×Dic5, C2×C20, C22×D5, C22×C10, C22×SD16, C40⋊C2, C2×C40, C2×Dic10, C2×Dic10, C2×D20, C2×D20, C22×Dic5, C22×C20, C23×D5, C2×C40⋊C2, C22×C40, C22×Dic10, C22×D20, C22×C40⋊C2
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C24, D10, C2×SD16, C22×D4, D20, C22×D5, C22×SD16, C40⋊C2, C2×D20, C23×D5, C2×C40⋊C2, C22×D20, C22×C40⋊C2

Smallest permutation representation of C22×C40⋊C2
On 160 points
Generators in S160
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(40 50)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 132)(2 133)(3 134)(4 135)(5 136)(6 137)(7 138)(8 139)(9 140)(10 141)(11 142)(12 143)(13 144)(14 145)(15 146)(16 147)(17 148)(18 149)(19 150)(20 151)(21 152)(22 153)(23 154)(24 155)(25 156)(26 157)(27 158)(28 159)(29 160)(30 121)(31 122)(32 123)(33 124)(34 125)(35 126)(36 127)(37 128)(38 129)(39 130)(40 131)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)(49 90)(50 91)(51 92)(52 93)(53 94)(54 95)(55 96)(56 97)(57 98)(58 99)(59 100)(60 101)(61 102)(62 103)(63 104)(64 105)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 113)(73 114)(74 115)(75 116)(76 117)(77 118)(78 119)(79 120)(80 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)(41 61)(42 80)(43 59)(44 78)(45 57)(46 76)(47 55)(48 74)(49 53)(50 72)(52 70)(54 68)(56 66)(58 64)(60 62)(63 79)(65 77)(67 75)(69 73)(81 83)(82 102)(84 100)(85 119)(86 98)(87 117)(88 96)(89 115)(90 94)(91 113)(93 111)(95 109)(97 107)(99 105)(101 103)(104 120)(106 118)(108 116)(110 114)(121 123)(122 142)(124 140)(125 159)(126 138)(127 157)(128 136)(129 155)(130 134)(131 153)(133 151)(135 149)(137 147)(139 145)(141 143)(144 160)(146 158)(148 156)(150 154)

G:=sub<Sym(160)| (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,121)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,131)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,61)(42,80)(43,59)(44,78)(45,57)(46,76)(47,55)(48,74)(49,53)(50,72)(52,70)(54,68)(56,66)(58,64)(60,62)(63,79)(65,77)(67,75)(69,73)(81,83)(82,102)(84,100)(85,119)(86,98)(87,117)(88,96)(89,115)(90,94)(91,113)(93,111)(95,109)(97,107)(99,105)(101,103)(104,120)(106,118)(108,116)(110,114)(121,123)(122,142)(124,140)(125,159)(126,138)(127,157)(128,136)(129,155)(130,134)(131,153)(133,151)(135,149)(137,147)(139,145)(141,143)(144,160)(146,158)(148,156)(150,154)>;

G:=Group( (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,121)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,131)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,61)(42,80)(43,59)(44,78)(45,57)(46,76)(47,55)(48,74)(49,53)(50,72)(52,70)(54,68)(56,66)(58,64)(60,62)(63,79)(65,77)(67,75)(69,73)(81,83)(82,102)(84,100)(85,119)(86,98)(87,117)(88,96)(89,115)(90,94)(91,113)(93,111)(95,109)(97,107)(99,105)(101,103)(104,120)(106,118)(108,116)(110,114)(121,123)(122,142)(124,140)(125,159)(126,138)(127,157)(128,136)(129,155)(130,134)(131,153)(133,151)(135,149)(137,147)(139,145)(141,143)(144,160)(146,158)(148,156)(150,154) );

G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(40,50),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,132),(2,133),(3,134),(4,135),(5,136),(6,137),(7,138),(8,139),(9,140),(10,141),(11,142),(12,143),(13,144),(14,145),(15,146),(16,147),(17,148),(18,149),(19,150),(20,151),(21,152),(22,153),(23,154),(24,155),(25,156),(26,157),(27,158),(28,159),(29,160),(30,121),(31,122),(32,123),(33,124),(34,125),(35,126),(36,127),(37,128),(38,129),(39,130),(40,131),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89),(49,90),(50,91),(51,92),(52,93),(53,94),(54,95),(55,96),(56,97),(57,98),(58,99),(59,100),(60,101),(61,102),(62,103),(63,104),(64,105),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,113),(73,114),(74,115),(75,116),(76,117),(77,118),(78,119),(79,120),(80,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32),(41,61),(42,80),(43,59),(44,78),(45,57),(46,76),(47,55),(48,74),(49,53),(50,72),(52,70),(54,68),(56,66),(58,64),(60,62),(63,79),(65,77),(67,75),(69,73),(81,83),(82,102),(84,100),(85,119),(86,98),(87,117),(88,96),(89,115),(90,94),(91,113),(93,111),(95,109),(97,107),(99,105),(101,103),(104,120),(106,118),(108,116),(110,114),(121,123),(122,142),(124,140),(125,159),(126,138),(127,157),(128,136),(129,155),(130,134),(131,153),(133,151),(135,149),(137,147),(139,145),(141,143),(144,160),(146,158),(148,156),(150,154)]])

92 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H5A5B8A···8H10A···10N20A···20P40A···40AF
order12···2222244444444558···810···1020···2040···40
size11···120202020222220202020222···22···22···22···2

92 irreducible representations

dim11111222222222
type++++++++++++
imageC1C2C2C2C2D4D4D5SD16D10D10D20D20C40⋊C2
kernelC22×C40⋊C2C2×C40⋊C2C22×C40C22×Dic10C22×D20C2×C20C22×C10C22×C8C2×C10C2×C8C22×C4C2×C4C23C22
# reps112111312812212432

Matrix representation of C22×C40⋊C2 in GL4(𝔽41) generated by

40000
04000
0010
0001
,
1000
04000
00400
00040
,
40000
0100
003124
001314
,
40000
04000
00636
00735
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,1,0,0,0,0,31,13,0,0,24,14],[40,0,0,0,0,40,0,0,0,0,6,7,0,0,36,35] >;

C22×C40⋊C2 in GAP, Magma, Sage, TeX

C_2^2\times C_{40}\rtimes C_2
% in TeX

G:=Group("C2^2xC40:C2");
// GroupNames label

G:=SmallGroup(320,1411);
// by ID

G=gap.SmallGroup(320,1411);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,675,80,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^40=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^19>;
// generators/relations

׿
×
𝔽